AIService Documentation
Comprehensive AIService Implementation Guide
The AIService integrates OpenAI's API to provide semantic search capabilities, intelligent query optimization, and AI-powered insights. It enhances traditional MySQL full-text search with natural language understanding and contextual relevance.
Service Overview
Responsibilities
The AIService handles:
- Semantic Search - Convert queries into embeddings for concept-based matching
- Query Optimization - AI-powered query refinement and expansion
- Result Enhancement - Categorization and contextual enrichment of search results
- Insights Generation - AI-driven analytics and trend analysis
- Natural Language Processing - Understanding user intent and query context
Architecture
export class AIService {
constructor(
private openaiClient: OpenAI,
private cacheService: CacheService,
private logger: Logger,
private config: AIConfig
) {}
// Core Methods
async processQuery(query: string, mode: SearchMode): Promise<ProcessedQuery>;
async generateEmbedding(text: string): Promise<number[]>;
async enhanceResults(
results: SearchResult[],
query: string
): Promise<EnhancedResult[]>;
async generateInsights(data: AnalyticsData): Promise<AIInsights>;
async optimizeQuery(
query: string,
context?: QueryContext
): Promise<OptimizedQuery>;
// Utility Methods
private async callOpenAI(
messages: ChatMessage[],
options?: OpenAIOptions
): Promise<string>;
private async handleRateLimit(error: OpenAIError): Promise<void>;
private validateQuery(query: string): boolean;
}
Core Functionality
Semantic Search Implementation
Query Processing and Embedding Generation
The service converts text queries into vector embeddings for semantic search:
interface ProcessedQuery {
originalQuery: string
optimizedQuery: string
embedding: number[]
intent: QueryIntent
categories: string[]
confidence: number
suggestions: string[]
}
interface QueryIntent {
type: 'search' | 'question' | 'command'
domain: string
specificity: 'broad' | 'specific' | 'targeted'
complexity: 'simple' | 'moderate' | 'complex'
}
async processQuery(query: string, mode: SearchMode): Promise<ProcessedQuery> {
const startTime = Date.now()
try {
// Validate and sanitize query
if (!this.validateQuery(query)) {
throw new AppError('INVALID_QUERY', 'Query validation failed')
}
// Check cache first
const cacheKey = `query_processing:${query}:${mode}`
const cached = await this.cacheService.get(cacheKey)
if (cached) {
return cached
}
// Generate embedding for semantic search
const embedding = await this.generateEmbedding(query)
// Analyze query intent and characteristics
const intent = await this.analyzeQueryIntent(query)
// Optimize query based on intent and mode
const optimizedQuery = await this.optimizeQuery(query, { mode, intent })
// Generate related suggestions
const suggestions = await this.generateQuerySuggestions(query, intent)
// Categorize query
const categories = await this.categorizeQuery(query, intent)
const processed: ProcessedQuery = {
originalQuery: query,
optimizedQuery: optimizedQuery.query,
embedding,
intent,
categories,
confidence: optimizedQuery.confidence,
suggestions
}
// Cache result
await this.cacheService.set(cacheKey, processed, 300000) // 5 minutes
const processingTime = Date.now() - startTime
this.logger.info('Query processed successfully', {
originalQuery: query,
processingTime,
confidence: processed.confidence,
categories: categories.join(', ')
})
return processed
} catch (error) {
const processingTime = Date.now() - startTime
this.logger.error('Query processing failed', {
error,
query,
processingTime
})
// Fallback to basic processing
return this.fallbackProcessing(query, mode)
}
}
async generateEmbedding(text: string): Promise<number[]> {
try {
const response = await this.openaiClient.embeddings.create({
model: this.config.embeddingModel || 'text-embedding-3-small',
input: text.substring(0, 8191), // Token limit
encoding_format: 'float'
})
this.logger.debug('Embedding generated', {
textLength: text.length,
embeddingDimensions: response.data[0].embedding.length
})
return response.data[0].embedding
} catch (error) {
if (this.isRateLimitError(error)) {
await this.handleRateLimit(error)
return this.generateEmbedding(text) // Retry
}
this.logger.error('Embedding generation failed', { error, textLength: text.length })
throw new AppError('AI_EMBEDDING_FAILED', error.message)
}
}
private async analyzeQueryIntent(query: string): Promise<QueryIntent> {
const prompt = `
Analyze the following search query and determine:
1. Intent type (search, question, or command)
2. Domain/topic area
3. Specificity level (broad, specific, or targeted)
4. Complexity level (simple, moderate, or complex)
Query: "${query}"
Respond in JSON format:
{
"type": "search|question|command",
"domain": "topic area",
"specificity": "broad|specific|targeted",
"complexity": "simple|moderate|complex"
}
`
try {
const response = await this.callOpenAI([
{ role: 'system', content: 'You are a query analysis expert. Respond only with valid JSON.' },
{ role: 'user', content: prompt }
])
return JSON.parse(response)
} catch (error) {
this.logger.warn('Intent analysis failed, using defaults', { error, query })
// Fallback to basic heuristics
return {
type: query.includes('?') ? 'question' : 'search',
domain: 'general',
specificity: query.length < 20 ? 'broad' : 'specific',
complexity: query.split(' ').length > 10 ? 'complex' : 'simple'
}
}
}
Query Optimization
AI-Powered Query Enhancement
The service optimizes queries for better search results:
interface OptimizedQuery {
query: string
expansions: string[]
synonyms: string[]
confidence: number
reasoning: string
alternatives: string[]
}
interface QueryContext {
mode: SearchMode
intent: QueryIntent
domain?: string
userHistory?: string[]
databaseSchema?: string[]
}
async optimizeQuery(query: string, context?: QueryContext): Promise<OptimizedQuery> {
try {
const cacheKey = `query_optimization:${query}:${JSON.stringify(context)}`
const cached = await this.cacheService.get(cacheKey)
if (cached) return cached
const prompt = this.buildOptimizationPrompt(query, context)
const response = await this.callOpenAI([
{
role: 'system',
content: 'You are a database search optimization expert. Provide detailed query optimization recommendations in JSON format.'
},
{ role: 'user', content: prompt }
], {
temperature: 0.3,
maxTokens: 800
})
const optimization = JSON.parse(response)
// Validate and enhance optimization
const optimized: OptimizedQuery = {
query: optimization.optimizedQuery || query,
expansions: optimization.expansions || [],
synonyms: optimization.synonyms || [],
confidence: Math.min(optimization.confidence || 0.5, 1.0),
reasoning: optimization.reasoning || 'AI optimization applied',
alternatives: optimization.alternatives || []
}
// Cache result
await this.cacheService.set(cacheKey, optimized, 600000) // 10 minutes
this.logger.info('Query optimized', {
original: query,
optimized: optimized.query,
confidence: optimized.confidence
})
return optimized
} catch (error) {
this.logger.error('Query optimization failed', { error, query })
// Return basic optimization
return {
query,
expansions: [],
synonyms: [],
confidence: 0.5,
reasoning: 'Basic optimization due to AI service unavailable',
alternatives: []
}
}
}
private buildOptimizationPrompt(query: string, context?: QueryContext): string {
let prompt = `
Optimize this database search query for better results:
Original Query: "${query}"
`
if (context) {
prompt += `
Context:
- Search Mode: ${context.mode}
- Intent Type: ${context.intent?.type}
- Domain: ${context.intent?.domain}
- Complexity: ${context.intent?.complexity}
`
if (context.databaseSchema?.length) {
prompt += `
- Available Tables: ${context.databaseSchema.join(', ')}`
}
if (context.userHistory?.length) {
prompt += `
- Recent Queries: ${context.userHistory.slice(-3).join(', ')}`
}
}
prompt += `
Provide optimization in this JSON format:
{
"optimizedQuery": "improved version of the query",
"expansions": ["related terms to include"],
"synonyms": ["alternative terms"],
"confidence": 0.8,
"reasoning": "explanation of optimizations",
"alternatives": ["alternative query formulations"]
}
Focus on:
1. Adding relevant synonyms and related terms
2. Improving query structure for full-text search
3. Expanding abbreviations and technical terms
4. Correcting common misspellings
5. Enhancing semantic clarity
`
return prompt
}
Result Enhancement
AI-Powered Result Processing
The service enhances search results with AI-generated insights:
interface EnhancedResult extends SearchResult {
categories: string[]
summary: string
relevanceExplanation: string
relatedTopics: string[]
keyInsights: string[]
confidenceScore: number
}
interface ResultEnhancement {
categorization: CategoryResult[]
summaries: string[]
insights: InsightResult[]
relationships: RelationshipResult[]
}
async enhanceResults(results: SearchResult[], query: string): Promise<EnhancedResult[]> {
if (!results.length) return []
try {
const startTime = Date.now()
// Process results in batches to manage token limits
const batchSize = 5
const enhancedBatches = []
for (let i = 0; i < results.length; i += batchSize) {
const batch = results.slice(i, i + batchSize)
const enhanced = await this.enhanceResultBatch(batch, query)
enhancedBatches.push(...enhanced)
}
const processingTime = Date.now() - startTime
this.logger.info('Results enhanced', {
resultCount: results.length,
processingTime,
averageEnhancementTime: processingTime / results.length
})
return enhancedBatches
} catch (error) {
this.logger.error('Result enhancement failed', { error, resultCount: results.length })
// Return results with basic enhancement
return results.map(result => ({
...result,
categories: ['General'],
summary: this.generateBasicSummary(result.content),
relevanceExplanation: 'Content matches search terms',
relatedTopics: [],
keyInsights: [],
confidenceScore: result.score || 0.5
}))
}
}
private async enhanceResultBatch(results: SearchResult[], query: string): Promise<EnhancedResult[]> {
const prompt = `
Analyze these search results for the query "${query}" and provide enhancements:
${results.map((result, index) => `
Result ${index + 1}:
Title: ${result.content.title || 'No title'}
Content: ${this.truncateContent(result.content, 300)}
Score: ${result.score}
`).join('\n')}
For each result, provide:
1. Categories (2-3 relevant categories)
2. Brief summary (1-2 sentences)
3. Relevance explanation (why it matches the query)
4. Related topics (2-3 related concepts)
5. Key insights (1-2 main takeaways)
6. Confidence score (0-1, how relevant to query)
Respond in JSON format:
{
"enhancements": [
{
"categories": ["category1", "category2"],
"summary": "brief summary",
"relevanceExplanation": "explanation of relevance",
"relatedTopics": ["topic1", "topic2"],
"keyInsights": ["insight1", "insight2"],
"confidenceScore": 0.85
}
]
}
`
try {
const response = await this.callOpenAI([
{
role: 'system',
content: 'You are an expert at analyzing search results and providing contextual enhancements. Always respond with valid JSON.'
},
{ role: 'user', content: prompt }
], {
temperature: 0.4,
maxTokens: 1500
})
const enhancement = JSON.parse(response)
return results.map((result, index) => {
const enhance = enhancement.enhancements[index] || {}
return {
...result,
categories: enhance.categories || ['General'],
summary: enhance.summary || this.generateBasicSummary(result.content),
relevanceExplanation: enhance.relevanceExplanation || 'Content matches search terms',
relatedTopics: enhance.relatedTopics || [],
keyInsights: enhance.keyInsights || [],
confidenceScore: enhance.confidenceScore || result.score || 0.5
}
})
} catch (error) {
this.logger.error('Batch enhancement failed', { error, batchSize: results.length })
throw error
}
}
Insights Generation
AI-Powered Analytics Insights
The service generates intelligent insights from search and usage patterns:
interface AIInsights {
summary: string
trends: TrendInsight[]
recommendations: RecommendationInsight[]
anomalies: AnomalyInsight[]
predictions: PredictionInsight[]
confidence: number
generatedAt: Date
}
interface TrendInsight {
type: 'increasing' | 'decreasing' | 'stable' | 'cyclical'
metric: string
description: string
significance: 'low' | 'medium' | 'high'
timeframe: string
}
interface RecommendationInsight {
category: 'performance' | 'content' | 'user_experience' | 'optimization'
title: string
description: string
impact: 'low' | 'medium' | 'high'
effort: 'low' | 'medium' | 'high'
actionable: boolean
}
async generateInsights(data: AnalyticsData): Promise<AIInsights> {
try {
const cacheKey = `insights:${data.period}:${data.checksum}`
const cached = await this.cacheService.get(cacheKey)
if (cached) return cached
const prompt = this.buildInsightsPrompt(data)
const response = await this.callOpenAI([
{
role: 'system',
content: 'You are an expert data analyst specializing in search analytics and user behavior. Provide actionable insights in JSON format.'
},
{ role: 'user', content: prompt }
], {
temperature: 0.6,
maxTokens: 2000
})
const rawInsights = JSON.parse(response)
const insights: AIInsights = {
summary: rawInsights.summary,
trends: rawInsights.trends || [],
recommendations: rawInsights.recommendations || [],
anomalies: rawInsights.anomalies || [],
predictions: rawInsights.predictions || [],
confidence: Math.min(rawInsights.confidence || 0.7, 1.0),
generatedAt: new Date()
}
// Cache insights
await this.cacheService.set(cacheKey, insights, 1800000) // 30 minutes
this.logger.info('AI insights generated', {
trendsCount: insights.trends.length,
recommendationsCount: insights.recommendations.length,
confidence: insights.confidence
})
return insights
} catch (error) {
this.logger.error('Insights generation failed', { error })
// Return basic insights
return {
summary: 'Unable to generate detailed insights due to AI service limitations',
trends: [],
recommendations: [],
anomalies: [],
predictions: [],
confidence: 0.3,
generatedAt: new Date()
}
}
}
private buildInsightsPrompt(data: AnalyticsData): string {
return `
Analyze this search analytics data and provide insights:
Time Period: ${data.period}
Total Searches: ${data.totalSearches}
Unique Queries: ${data.uniqueQueries}
Average Response Time: ${data.averageResponseTime}ms
Success Rate: ${data.successRate}%
Top Queries:
${data.topQueries.map(q => `- "${q.query}" (${q.count} times)`).join('\n')}
Search Modes Usage:
- Natural Language: ${data.searchModes.natural}%
- Boolean: ${data.searchModes.boolean}%
- Semantic: ${data.searchModes.semantic}%
Performance Metrics:
- Cache Hit Rate: ${data.cacheHitRate}%
- Error Rate: ${data.errorRate}%
- Peak Usage Hour: ${data.peakHour}
Provide analysis in this JSON format:
{
"summary": "Overall summary of findings",
"trends": [
{
"type": "increasing|decreasing|stable|cyclical",
"metric": "metric name",
"description": "trend description",
"significance": "low|medium|high",
"timeframe": "time period"
}
],
"recommendations": [
{
"category": "performance|content|user_experience|optimization",
"title": "recommendation title",
"description": "detailed description",
"impact": "low|medium|high",
"effort": "low|medium|high",
"actionable": true
}
],
"anomalies": [
{
"type": "spike|drop|pattern",
"metric": "affected metric",
"description": "anomaly description",
"severity": "low|medium|high",
"possibleCauses": ["cause1", "cause2"]
}
],
"predictions": [
{
"metric": "metric name",
"prediction": "predicted trend or value",
"timeframe": "prediction timeframe",
"confidence": 0.8
}
],
"confidence": 0.85
}
Focus on actionable insights that can help improve search performance, user experience, and system optimization.
`
}
Error Handling and Resilience
OpenAI API Error Management
The service implements comprehensive error handling for OpenAI API interactions:
interface OpenAIError {
code: string
message: string
type: string
param?: string
}
enum AIErrorCodes {
RATE_LIMIT_EXCEEDED = 'AI_RATE_LIMIT_EXCEEDED',
QUOTA_EXCEEDED = 'AI_QUOTA_EXCEEDED',
MODEL_UNAVAILABLE = 'AI_MODEL_UNAVAILABLE',
INVALID_REQUEST = 'AI_INVALID_REQUEST',
API_ERROR = 'AI_API_ERROR',
TIMEOUT = 'AI_TIMEOUT'
}
private async callOpenAI(
messages: ChatMessage[],
options: OpenAIOptions = {}
): Promise<string> {
const requestId = `ai_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`
try {
this.logger.debug('OpenAI API request', { requestId, messageCount: messages.length })
const response = await this.openaiClient.chat.completions.create({
model: options.model || this.config.chatModel || 'gpt-3.5-turbo',
messages,
temperature: options.temperature || 0.7,
max_tokens: options.maxTokens || 1000,
top_p: options.topP || 1.0,
frequency_penalty: options.frequencyPenalty || 0,
presence_penalty: options.presencePenalty || 0,
...options.additionalParams
})
const result = response.choices[0]?.message?.content
if (!result) {
throw new Error('Empty response from OpenAI API')
}
this.logger.debug('OpenAI API response received', {
requestId,
responseLength: result.length,
tokensUsed: response.usage?.total_tokens
})
// Track usage
await this.trackUsage({
requestId,
model: response.model,
promptTokens: response.usage?.prompt_tokens || 0,
completionTokens: response.usage?.completion_tokens || 0,
totalTokens: response.usage?.total_tokens || 0
})
return result
} catch (error) {
return this.handleOpenAIError(error, requestId, messages, options)
}
}
private async handleOpenAIError(
error: any,
requestId: string,
messages: ChatMessage[],
options: OpenAIOptions
): Promise<string> {
this.logger.error('OpenAI API error', { error, requestId })
// Rate limiting
if (this.isRateLimitError(error)) {
await this.handleRateLimit(error)
return this.callOpenAI(messages, options) // Retry
}
// Quota exceeded
if (this.isQuotaError(error)) {
throw new AppError(AIErrorCodes.QUOTA_EXCEEDED, 'OpenAI API quota exceeded')
}
// Model unavailable
if (this.isModelError(error)) {
// Try fallback model
const fallbackOptions = { ...options, model: 'gpt-3.5-turbo' }
return this.callOpenAI(messages, fallbackOptions)
}
// Invalid request
if (this.isValidationError(error)) {
throw new AppError(AIErrorCodes.INVALID_REQUEST, `Invalid OpenAI request: ${error.message}`)
}
// Generic API error
throw new AppError(AIErrorCodes.API_ERROR, `OpenAI API error: ${error.message}`)
}
private async handleRateLimit(error: OpenAIError): Promise<void> {
const retryAfter = this.extractRetryAfter(error) || 60 // Default 60 seconds
this.logger.warn('Rate limit hit, waiting before retry', { retryAfter })
// Update rate limit metrics
await this.updateRateLimitMetrics(retryAfter)
// Exponential backoff with jitter
const jitter = Math.random() * 0.1 * retryAfter
const delay = (retryAfter + jitter) * 1000
await this.sleep(delay)
}
private isRateLimitError(error: any): boolean {
return error.status === 429 ||
error.code === 'rate_limit_exceeded' ||
error.message?.includes('rate limit')
}
private isQuotaError(error: any): boolean {
return error.status === 429 &&
(error.message?.includes('quota') || error.message?.includes('billing'))
}
Performance Optimization
Caching Strategy
The service implements intelligent caching to reduce API calls:
interface CacheStrategy {
embeddings: {
ttl: number // 24 hours
prefix: string
}
queryOptimization: {
ttl: number // 10 minutes
prefix: string
}
insights: {
ttl: number // 30 minutes
prefix: string
}
}
private cacheStrategy: CacheStrategy = {
embeddings: {
ttl: 86400000, // 24 hours - embeddings are stable
prefix: 'ai:embedding:'
},
queryOptimization: {
ttl: 600000, // 10 minutes - query optimization can change
prefix: 'ai:optimization:'
},
insights: {
ttl: 1800000, // 30 minutes - insights have moderate freshness needs
prefix: 'ai:insights:'
}
}
private generateCacheKey(prefix: string, data: any): string {
const hash = this.hashData(data)
return `${prefix}${hash}`
}
private hashData(data: any): string {
return require('crypto')
.createHash('md5')
.update(JSON.stringify(data))
.digest('hex')
}
private async getCachedResult<T>(
type: keyof CacheStrategy,
data: any
): Promise<T | null> {
const config = this.cacheStrategy[type]
const key = this.generateCacheKey(config.prefix, data)
try {
const cached = await this.cacheService.get(key)
if (cached) {
this.logger.debug('Cache hit', { type, key })
return cached
}
return null
} catch (error) {
this.logger.warn('Cache retrieval failed', { error, type, key })
return null
}
}
private async setCachedResult<T>(
type: keyof CacheStrategy,
data: any,
result: T
): Promise<void> {
const config = this.cacheStrategy[type]
const key = this.generateCacheKey(config.prefix, data)
try {
await this.cacheService.set(key, result, config.ttl)
this.logger.debug('Result cached', { type, key })
} catch (error) {
this.logger.warn('Cache storage failed', { error, type, key })
}
}
Testing and Validation
Unit Testing
describe('AIService', () => {
let aiService: AIService;
let mockOpenAI: jest.Mocked<OpenAI>;
let mockCacheService: jest.Mocked<CacheService>;
let mockLogger: jest.Mocked<Logger>;
beforeEach(() => {
mockOpenAI = {
chat: {
completions: {
create: jest.fn(),
},
},
embeddings: {
create: jest.fn(),
},
};
mockCacheService = {
get: jest.fn(),
set: jest.fn(),
};
mockLogger = {
info: jest.fn(),
error: jest.fn(),
debug: jest.fn(),
warn: jest.fn(),
};
aiService = new AIService(mockOpenAI, mockCacheService, mockLogger, {
chatModel: 'gpt-3.5-turbo',
embeddingModel: 'text-embedding-3-small',
});
});
describe('generateEmbedding', () => {
it('should generate embedding for text', async () => {
const mockEmbedding = [0.1, 0.2, 0.3, 0.4];
mockOpenAI.embeddings.create.mockResolvedValue({
data: [{ embedding: mockEmbedding }],
});
const result = await aiService.generateEmbedding('test query');
expect(result).toEqual(mockEmbedding);
expect(mockOpenAI.embeddings.create).toHaveBeenCalledWith({
model: 'text-embedding-3-small',
input: 'test query',
encoding_format: 'float',
});
});
it('should handle rate limiting gracefully', async () => {
const rateLimitError = new Error('Rate limit exceeded');
rateLimitError.status = 429;
mockOpenAI.embeddings.create
.mockRejectedValueOnce(rateLimitError)
.mockResolvedValueOnce({ data: [{ embedding: [0.1, 0.2] }] });
const result = await aiService.generateEmbedding('test query');
expect(result).toEqual([0.1, 0.2]);
expect(mockOpenAI.embeddings.create).toHaveBeenCalledTimes(2);
});
});
describe('processQuery', () => {
it('should process query and return enhanced result', async () => {
mockCacheService.get.mockResolvedValue(null);
mockOpenAI.embeddings.create.mockResolvedValue({
data: [{ embedding: [0.1, 0.2, 0.3] }],
});
mockOpenAI.chat.completions.create.mockResolvedValue({
choices: [
{ message: { content: '{"type": "search", "domain": "database"}' } },
],
});
const result = await aiService.processQuery(
'database optimization',
'semantic'
);
expect(result).toHaveProperty('originalQuery', 'database optimization');
expect(result).toHaveProperty('embedding');
expect(result).toHaveProperty('intent');
expect(result.embedding).toHaveLength(3);
});
});
});
Integration Testing
describe('AIService Integration', () => {
let aiService: AIService;
beforeAll(async () => {
// Use real OpenAI client with test API key
aiService = new AIService(
new OpenAI({ apiKey: process.env.TEST_OPENAI_API_KEY }),
new CacheService(),
logger,
testConfig
);
});
it('should perform end-to-end AI processing', async () => {
const query = 'MySQL performance optimization techniques';
// Process query
const processed = await aiService.processQuery(query, 'semantic');
expect(processed.originalQuery).toBe(query);
expect(processed.embedding).toHaveLength(1536); // text-embedding-3-small dimension
// Optimize query
const optimized = await aiService.optimizeQuery(query);
expect(optimized.query).toBeDefined();
expect(optimized.confidence).toBeGreaterThan(0);
// Generate insights (mock data)
const mockAnalytics = createMockAnalyticsData();
const insights = await aiService.generateInsights(mockAnalytics);
expect(insights.summary).toBeDefined();
expect(insights.trends.length).toBeGreaterThan(0);
}, 30000); // 30 second timeout for AI operations
});
Configuration and Deployment
Environment Configuration
interface AIConfig {
openaiApiKey: string;
chatModel: string;
embeddingModel: string;
maxTokens: number;
temperature: number;
requestTimeout: number;
rateLimitBackoff: number;
enableFallbacks: boolean;
cacheEnabled: boolean;
}
const defaultConfig: Partial<AIConfig> = {
chatModel: 'gpt-3.5-turbo',
embeddingModel: 'text-embedding-3-small',
maxTokens: 1000,
temperature: 0.7,
requestTimeout: 30000,
rateLimitBackoff: 60000,
enableFallbacks: true,
cacheEnabled: true,
};
Best Practices
- API Key Security: Store OpenAI API keys securely, never in code
- Rate Limiting: Implement proper backoff strategies for rate limits
- Caching: Cache expensive operations like embeddings and insights
- Error Handling: Graceful degradation when AI services are unavailable
- Cost Management: Monitor token usage and implement usage limits
- Quality Control: Validate AI responses and implement fallbacks
- Performance: Batch operations when possible to reduce API calls
The AIService provides intelligent capabilities that significantly enhance traditional database search, making Altus 4 a truly AI-powered search platform.